Part Number Hot Search : 
URF1660 020122MR UPG2214 2SC17 LB1848MC XFTPR T74LV HSB50K
Product Description
Full Text Search
 

To Download IRF9910 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 95869
IRF9910
HEXFET(R) Power MOSFET
Applications l Dual SO-8 MOSFET for POL converters in desktop, servers, graphics cards, game consoles and set-top box
VDSS
20V
RDS(on) max
Q1 13.4m:@VGS = 10V Q2 9.3m:@VGS = 10V
ID
10A 12A
Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating
6 * 6 *
' ' ' '
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C PD @TA = 70C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current 10 8.3 83 2.0 1.3 0.016 -55 to + 150 W/C C
Q1 Max.
20 20
Q2 Max.
Units
V
12 9.9 98 W A
c
Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range
Thermal Resistance
Parameter
RJL RJA Junction-to-Drain Lead Junction-to-Ambient
Typ.
--- ---
Max.
20 62.5
Units
C/W
fg
Notes through are on page 10
www.irf.com
1
04/28/04
IRF9910
Static @ T J = 25C (unless otherwise specified)
Parameter BV DSS V DSS /TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Q1&Q2 Q1 Q2 Q1 Q2 V GS(th) V GS(th)/TJ I DSS I GSS gfs Qg Q gs1 Q gs2 Q gd Q godr Q sw Q oss t d(on) tr t d(off) tf C iss C oss C rss Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Q gs2 + Q gd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 20 --- --- --- --- --- --- 1.65 --- --- --- --- --- --- 19 27 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.0061 0.014 10.7 14.6 7.4 9.1 --- -4.9 -5.0 --- --- --- --- --- --- 7.4 15 2.6 4.3 0.85 1.4 2.5 5.4 1.5 3.9 3.4 6.8 4.0 8.7 6.3 8.3 10 14 9.2 15 4.5 7.5 900 1860 290 600 140 310 Max. --- --- --- 13.4 18.3 9.3 11.3 2.55 --- --- 1.0 100 100 -100 --- --- 11 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- --- Min. Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 --- --- --- --- --- --- --- --- --- Typ. --- --- --- --- --- 11 16 3.1 4.9 Max. 2.5 83 98 1.0 1.0 17 24 4.7 7.3 Units A A V ns nC Units V V/C Conditions V GS = 0V, ID = 250A Reference to 25C, ID = 1mA V GS = 10V, ID = 10A V GS = 4.5V, ID = 8.3A V GS = 10V, ID = 12A V GS = 4.5V, ID = 9.8A V DS = V GS , ID = 250A
R DS(on)
Static Drain-to-Source On-Resistance
m
e e e e
V mV/C A nA S
V DS = 16V, V GS = 0V V DS = 16V, V GS = 0V, TJ = 125C V GS = 20V V GS = -20V V DS = 10V, ID = 8.3A V DS = 10V, ID = 9.8A
nC
Q1 V DS = 10V V GS = 4.5V, ID = 8.3A Q2 V DS = 10V V GS = 4.5V, ID = 9.8A
nC
V DS = 10V, V GS = 0V Q1 V DD = 16V, V GS = 4.5V ID = 8.3A
ns Q2 V DD = 16V, V GS = 4.5V ID = 9.8A Clamped Inductive Load V GS = 0V V DS = 10V = 1.0MHz
pF
Avalanche Characteristics Parameter Single Pulse Avalanche Energy E AS Avalanche Current I AR Diode Characteristics Param eter
d
Q1 Max. 33 8.3
Q2 Max. 26 9.8 Conditions
Units mJ A
IS I SM V SD t rr Q rr
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25C, I S = 8.3A, V GS = 0V TJ = 25C, I S = 9.8A, V GS = 0V Q1 TJ = 25C, I F = 8.3A, V DD = 10V, di/dt = 100A/s Q2 TJ = 25C, I F = 9.8A, V DD = 10V, di/dt = 100A/s
D
e e e
S
2
e www.irf.com
Typical Characteristics Q1 - Control FET
10000
IRF9910
Q2 - Synchronous FET
TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V
ID, Drain-to-Source Current (A)
10000
TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V
1000 100 10 1 0.1
2.5V
BOTTOM
ID, Drain-to-Source Current (A)
1000 100 10 1
2.5V
BOTTOM
60s PULSE WIDTH Tj = 25C
0.1 0.01 0.1 1
0.01 0.1 1 10 100 V DS, Drain-to-Source Voltage (V)
60s PULSE WIDTH Tj = 25C
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
10000
Fig 2. Typical Output Characteristics
10000
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1000
BOTTOM
VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V
TOP
1000
BOTTOM
VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V
100 10 1 0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V)
2.5V 60s PULSE WIDTH Tj = 150C
100 10
2.5V
1
60s PULSE WIDTH Tj = 150C
0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics
100
Fig 3. Typical Output Characteristics
ID, Drain-to-Source Current ()
T = 150C J
10
ID, Drain-to-Source Current ()
100
10
T = 25C J
1
T = 25C J
1
T = 150C J
V = 10V DS 60s PULSE WIDTH
0.1 2 3 4 5 6
V = 10V DS 60s PULSE WIDTH
0.1 1 2 3 4 5
VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics
VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics
www.irf.com
3
IRF9910
Q1 - Control FET
10000
VGS = 0V, C iss rss oss =C =C =C gs f = 1 MHZ +C gd ,C ds SHORTED
Typical Characteristics Q2 - Synchronous FET
100000
VGS = 0V, f = 1 MHZ C =C +C , C SHORTED iss gs gd ds C rss oss =C =C gd ds +C gd
C, Capacitance(pF)
gd ds +C gd
C, Capacitance(pF)
C C
10000
C
1000
C
iss
C
iss
C oss
1000
C oss C rss
C
rss
100 1 10 100
100 1 10 100
VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance Vs.Drain-to-Source Voltage
VGS, Gate-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance Vs.Drain-to-Source Voltage
VGS, Gate-to-Source Voltage (V)
6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 5 10 15 20
I = 9.8A D V = 16V DS V = 10V DS
6.0
I = 8.3A D
5.0 4.0 3.0 2.0 1.0 0.0
V = 16V DS V = 10V DS
0 1 2 3 4 5 6 7 8 9 10 QG Total Gate Charge (nC) Fig. 9. Gate-to-Source Voltage vs Typical Gate Charge
QG Total Gate Charge (nC) Fig. 10. Gate-to-Source Voltage vs Typical Gate Charge
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
1000
OPERATION IN THIS AREA LIMITED BY R (on) DS
1000
OPERATION IN THIS AREA LIMITED BY R (on) DS
100 10 1 0.1 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 11. Maximum Safe Operating Area
100 10 1 0.1 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area
100sec 1msec 10msec T = 25C A Tj = 150C Single Pulse
100sec 1msec 10msec T = 25C A Tj = 150C Single Pulse
4
www.irf.com
Typical Characteristics Q1 - Control FET
I = 10A D V = 10V GS
IRF9910
Q2 - Synchronous FET
I = 12A D V = 10V GS
1.0
R DS(on) , Drain-to-Source On Resistance
R DS(on) , Drain-to-Source On Resistance
1.5
1.5
(Normalized)
(Normalized)
1.0
0.5
-60 -40 -20 0 20 40 60 80 100120140160 TJ , Junction Temperature (C)
0.5
-60 -40 -20 0 20 40 60 80 100120140160 TJ , Junction Temperature (C)
Fig 13. Normalized On-Resistance vs. Temperature
100 ISD, Reverse Drain Current (A)
Fig 14. Normalized On-Resistance vs. Temperature
100 ISD, Reverse Drain Current (A)
T = 150C J
T = 150C J
10
10
T = 25C J
T = 25C J
1
1
V = 0V GS
V = 0V GS
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
VSD, Source-to-Drain Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 15. Typical Source-Drain Diode Forward Voltage Fig 16. Typical Source-Drain Diode Forward Voltage
, Drain-to -Source On Resistance (m) DS(on)
R DS(on), Drain-to -Source On Resistance (m)
40 35 30 25 20 15 10 5 0 2 3 4 5 6 7 8 9 10 TJ = 25C T = 125C J I = 10A D
25 ID = 12A 20
15
T = 125C J
10 T = 25C J
5
R
0 2 3 4 5 6 7 8 9 10
VGS, Gate -to -Source Voltage (V)
Fig 17. Typical On-Resistance vs. Gate Voltage
Fig 18. Typical On-Resistance vs. Gate Voltage
VGS, Gate -to -Source Voltage (V)
www.irf.com
5
IRF9910
Q1 - Control FET
12 10 ID , Drain Current (A)
Typical Characteristics Q2 - Synchronous FET
14 12 ID , Drain Current (A) 10 8 6 4 2 0
8 6 4 2 0 25 50 75 100 125 150
25
50
75
100
125
150
TA , Ambient Temperature (C)
TA , Ambient Temperature (C)
Fig 19. Maximum Drain Current vs. Ambient Temperature
2.5 VGS(th) Gate threshold Voltage (V)
Fig 20. Maximum Drain Current vs. Ambient Temperature
2.5 VGS(th) Gate threshold Voltage (V)
2.0 ID = 250A 1.5
2.0 ID = 250A 1.5
1.0 -75 -50 -25 0 25 50 75 100 125 150
1.0 -75 -50 -25 0 25 50 75 100 125 150
TJ , Temperature ( C )
TJ , Temperature ( C )
Fig 21. Threshold Voltage vs. Temperature
EAS , Single Pulse Avalanche Energy (mJ) 140
I
Fig 22. Threshold Voltage vs. Temperature
EAS , Single Pulse Avalanche Energy (mJ) 120
I
120 100 80 60 40 20 0 25 50 75
TOP BOTTOM
D 2.2A 2.6A 8.3A
100 80 60 40 20 0 25 50 75
TOP BOTTOM
D 5.5A 6.2A 9.8A
100
125
150
100
125
150
Starting T , Junction Temperature (C) J
Fig 23. Maximum Avalanche Energy vs. Drain Current
Fig 24. Maximum Avalanche Energy vs. Drain Current
Starting T , Junction Temperature (C) J
6
www.irf.com
IRF9910
100
D = 0.50
Thermal Response ( Z thJA )
10
0.20 0.10 0.05 0.02 0.01
J J 1 R1 R1 2 R2 R2 R3 R3 3 R4 R4 C 1 2 3 4 4
1
Ri (C/W)
1.688 14.468 30.264 16.106
i (sec)
0.000230 0.105807 1.001500 29.90000
0.1
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc
1E-005 0.0001 0.001 0.01 0.1 1 10 100
0.001 1E-006
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Current Regulator Same Type as D.U.T.
50K
V(BR)DSS
15V
12V
.2F .3F
tp
DRIVER
D.U.T.
VDS L
+ V - DS
VGS
RG
20V VGS
D.U.T
IAS tp
+ - VDD
A
3mA
0.01
I AS
IG
ID
Current Sampling Resistors
Fig 26. Unclamped Inductive Test Circuit and Waveform
LD VDS
Fig 27. Gate Charge Test Circuit
+
V DD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1%
90%
VDS
10%
VGS
td(on) tr td(off) tf
Fig 28. Switching Time Test Circuit
Fig 29. Switching Time Waveforms
www.irf.com
7
IRF9910
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* dv/dt controlled by RG * Driver same type as D.U.T. * I SD controlled by Duty Factor "D" * D.U.T. - Device Under Test
V DD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
*
VGS = 5V for Logic Level Devices
Fig 30. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
Id Vds Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 31. Gate Charge Waveform
8
www.irf.com
IRF9910
SO-8 Package Details
Dimensions are shown in millimeters (inches)
9 6 ' & ! % " $ 7
9DH 6 6 i DI8C@T HDI H6Y $"! %'' # " &$ '( (' ! (' (%' HDGGDH@U@ST HDI H6Y "$ &$ "" ( #' !$ $ !$ $
% @
$ #
C !$Ab dA
6
p 9 @ r r C
#(& $&# $AA76TD8 !$AA76TD8 !!'# !## (( % A (% $ A'
"' # !&AA76TD8 %"$AA76TD8 $' %! !$ # A $ !& A'
%Y r
F G
r
6
FAA#$ 8 Ab#dA 'YAG & 'YAp
'YAi !$Ab dA
6 867
IPU@T) AA9DH@ITDPIDIBAEAUPG@S6I8DIBAQ@SA6TH@A #$H ((# !AA8PIUSPGGDIBA9DH@ITDPI)AHDGGDH@U@S "AA9DH@ITDPITA6S@ATCPXIADIAHDGGDH@U@STAbDI8C@Td #AAPVUGDI@A8PIAPSHTAUPAE@9@8APVUGDI@AHT !66 $AAA9DH@ITDPIA9P@TAIPUADI8GV9@AHPG9AQSPUSVTDPIT AAAAAHPG9AQSPUSVTDPITAIPUAUPA@Y8@@9A $Ab%d %AAA9DH@ITDPIA9P@TAIPUADI8GV9@AHPG9AQSPUSVTDPIT AAAAAHPG9AQSPUSVTDPITAIPUAUPA@Y8@@9A!$Ab d &AAA9DH@ITDPIADTAUC@AG@IBUCAPAAG@69AAPSATPG9@SDIBAUP AAAAA6ATV7TUS6U@
APPUQSDIU 'YA&!Ab!'d
%#%Ab!$$d
"YA !&Ab$d
'YA &'Ab&d
SO-8 Part Marking
@Y6HQG@)AUCDTADTA6IADSA& AHPTA@U 96U@A8P9@AXX A2AG6TUA9DBDUAPAAUC@A@6S XXA2AX@@F GPUA8P9@ Q6SUAIVH7@S
9
DIU@SI6UDPI6G S@8UDAD@S GPBP
www.irf.com
<:: ;;;; )
IRF9910
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, Q1: L = 0.95mH RG = 25, IAS = 8.3A; Q2: L = 0.54mH RG = 25, IAS = 9.8A. Pulse width 400s; duty cycle 2%.
When mounted on 1 inch square copper board. R is measured at TJ approximately 90C.
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/04
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF9910

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X